June 28, 2011

International Team Demonstrates Subatomic Quantum Memory in Diamond

Structure and manipulation: A NV (nitrogen vacancy) centre in the diamond lattice including the electronic spin (red) and the nuclear spin (blue). b, Electron–nuclear spin level diagram for the NV centre in the vicinity of the avoided level crossing.

UCSB Physicists were able to coax the fragile quantum information contained within a single electron in diamond to move into an adjacent single nitrogen nucleus, and then back again using on-chip wiring.

"This ability is potentially useful to create an atomic-scale memory element in a quantum computer based on diamond, since the subatomic nuclear states are more isolated from destructive interactions with the outside world," said David Awschalom, senior author. Awschalom is director of UCSB's Center for Spintronics and Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute.

Nature Physics - A quantum memory intrinsic to single nitrogen–vacancy centres in diamond

A quantum memory, composed of a long-lived qubit coupled to each processing qubit, is important to building a scalable platform for quantum information science. These two qubits should be connected by a fast and high-fidelity operation to store and retrieve coherent quantum states. Here, we demonstrate a room-temperature quantum memory based on the spin of the nitrogen nucleus intrinsic to each nitrogen–vacancy (NV) centre in diamond. We perform coherent storage of a single NV centre electronic spin in a single nitrogen nuclear spin using Landau–Zener transitions across a hyperfine-mediated avoided level crossing. By working outside the asymptotic regime, we demonstrate coherent state transfer in as little as 120 ns with total storage fidelity of 88±6%. This work demonstrates the use of a quantum memory that is compatible with scaling as the nitrogen nucleus is deterministically present in each NV centre defect

Scientists have recently shown that it is possible to synthesize thousands of these single electron states with beams of nitrogen atoms, intentionally creating defects to trap the single electrons. "What makes this demonstration particularly exciting is that a nitrogen atom is a part of the defect itself, meaning that these sub-atomic memory elements automatically scale with the number of logical bits in the quantum computer," said lead author Greg Fuchs, a postdoctoral fellow at UCSB.

Rather than using logical elements like transistors to manipulate digital states like "0" or "1," a quantum computer needs logical elements capable of manipulating quantum states that may be "0" and "1" at the same time. Even at ambient temperature, these defects in diamond can do exactly that, and have recently become a leading candidate to form a quantum version of a transistor.

However, there are still major challenges to building a diamond-based quantum computer. One of these is finding a method to store quantum information in a scalable way. Unlike a conventional computer, where the memory and the processor are in two different physical locations, in this case they are integrated together, bit-for-bit.

14 pages of supplemental information

If you liked this article, please give it a quick review on ycombinator or StumbleUpon. Thanks

Форма для связи


Email *

Message *